Rigorous System Design

RTSS 2014
Rome
4 December 2014

Joseph Sifakis
RISD Laboratory EPFL

s i 1] | {
' 3 1 ! W s
& : S £
:i _!-'"l {

~ e
7
n

i Sralegy =

J

2! '_. :
clog

/. e
Fr'sdu'élig_%xﬁﬁ@g("%«n :

i Systems Everywhere — For a Smarter Planet

The planet will be instrumented,
interconnected, intelligent

People want it. We can do it. g ”i:“
- ||||ii

{[A
|

-
= 4

INSTRUMENTED: We now have the ability to measure, sense and
see the exact condition of practically everything.

INTERCONNECTED: People, systems and objects can communicats
and interact with each other in entirely new ways

“* INTELLIGENT: We can respond to changes quickly and accurately, b
predicting events and optimizing resources

Systems Everywhere — Mobiles Services

30 January 2014 Last updated at 04:29 GMT = Sh:

Google sells Motorola Mobility unit to
Le novo for $3bn Units and Acquire Executive

Ay

M Google acquires digital thermostat and smoke detector
maker Nest for $3.2B

by John Cook on 1/13/2014 at 1:14 pm | 12 Comments

Share this: [i%] Emai wiweet (58 [[i] share| 10 3+ share 22

Google is making a big bet on the future of
\\\

the connected home, announcing today
that it has acquired Nest for $3.2 billion in
cash.

The acquisition comes just about a year
after Nest raised $80 million in venture
funding, reportedly at a valuation of $800
million. At the time of that deal, the
company was reportedly shipping 40,000 to
50,000 of its thermostats per month. The
thermostats, which allow users to regulate
temperatures in a home while on the go,
sell for $249.

Ritsuko Ando/t

oin Microsoft, setting him up as a potential successor for Steven

Related

thed an agreement to acquire
Tokia for about $7.2 billion, in W TWITTER

K] FaceBOOK

nsform Microsoft’s business for a mobile era
by.

¥4 GOOGLE+

P

a Systems Everywhere — The Google Universe

WAY OUT THERE r"T‘J
P e g N

CAN

8[@

= SOLVE

rrrrr

Fgma

The search giant is launching a venture
to extend the human life span.

T FIZZLED
That would be crazy—if it weren't Googe

TS 4 1 Ay 'b--' Rk
NIERMNET VER/ r-l..":i-’.'
I:ln'l-lll'l l&”.

i
m:
il
il
| i m
il
1 _m_“_ |
5 | __
= | i m _*_ mmwﬁ__
< ;
° w _ ,;__ __
i I
2 “_ .
< _ :
= .“._ | mﬂ__ ___
_ m“_ﬂ i _
m “ m _h“ _
m M _ |
_
0 I
2 |
5
7

From Programs to Systems — Significant Differences

4 1/0 values

 Terminating

 Deterministic

d Platform-independent
behavior

 Theory of computation

4 1/O streams of values

 Non-terminating

1 Non-predictable

d Platform-dependent
behavior

d No theory!

From Programs to Systems — New Trends

New trends break with traditional Computing Systems Engineering.
It is hard to jointly meet technical requirements such as:

» Reactivity: responding within known and guaranteed delay
e.g. flight controller

= Autonomy: provide continuous service without human intervention
e.g. no manual start, optimal power management

» Dependability: guaranteed minimal service in any case
e.g. resilience to attacks, hardware failures, software execution errors

= Scalability: at runtime or evolutionary growth (linear performance
increase with resources)
e.g. reconfiguration, scalable services

...and also take into account economic requirements for optimal cost/quality

Technological challenge:

Capacity to design systems of guaranteed functionality and quality,
at acceptable costs.

O System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

| . .
&, System Design — About Design

RECIPE

(Program)
INGREDIENTS

(RER V(=)

=1 pie plate buttered
=50r 6 apples, cut up
=3, c. butter, melted

=] c. flour

» Blend in unbeaten egg, ﬂ?ﬁé?ﬁﬁﬁzigﬁm

pinch of salt and the nuts; = 1tbsp sugar
= Mix well and pour over apples; =1c. Sugar
»Bake at 350 degrees P T
for 45 minutes ""

= Put apples in pie plate;
» Sprinkle with cinnamon
» and 1 tablespoon sugar; l
" In a bowl mix 1 cup sugar,
flour and butter;

Materialization

c
O
)

©
N

©
| -

-
©

()

&)

@)

-
al

/ uonezijeLare

(3|geInoaxa)
. MS uonedl|ddy

-~
N

(8nnese|oap)
Sluswalinbay

Correctness?

N
Q.
@
O
=
©
=
E
—
|

Correctness?

. .
& System Design

System Design — The Concept of Correctness for Systems

Trustworthiness requirements express assurance that the designed
system can be trusted that it will perform as expected despite

i Y
£ B

Design/Programming Environment Malevolent
Errors Disturbances Actions

Optimization requirements are quantitative constraints on resources such
as time, memory and energy characterizing

1) performance e.g. throughput, jitter and latency

2) cost e.g. storage efficiency, processor utilizability

3) tradeoffs between performance and cost

12

System Design — Trustworthiness vs. Optimization

O Trustworthiness requirements characterize qualitative correctness — a
state is either trustworthy or not

O Optimization requirements characterize execution sequences

Non Trustworthy States

Trustworthiness vs. Optimization

0 The two types of requirements are often antagonistic

0 System design should determine tradeoffs driven by cost-effectiveness
and technical criteria

13

System Design — Levels of Criticality

MountfMount Sinai
SSSinai [Medical Center

Security critical:

Safety critical: a failure ["SEIHELY harmful
may be a catastrophic - unauthorized
threat to human lives access

Gonerator

Mission critical: system availability is
essential for the proper running of an
organization or of a larger system

Best-effort: optimized use of resources for . =
an acceptable level of trustworthiness amazoncom [1

Google 'Y/)

System Design — Reported Failures
787 Dreamliner's safety systems failed. NTSB savs .
Massive cyberattack hits Internet users I S0ftuare bug Led to Systen Failure

O s v s o e ncer o SMUEAOUN OF the Hartsfield-Jackson Atlanta International Airport

Toyota recalls more than 400,000 Priuses, other nybria cars

By Blaine Harden and Frank anrens | 9gs 0f Connunication betueen the FAA Alr Traffic Control Center, and Airplar

TOKYO — Toyota on Tuesday amno I D A2 Software Failures Responsible for 24% Of
global recall -- this time mvolving n . .

Priuses and other hybrid cars with by All Mﬂdlﬂﬂl Device Rec'ﬂlls

on the same day that the U.S. Transj

Department said 1t 1s reviewing driv LDEE u'I: thE II'IHI"E Fular' La"dEr 2

hard-to-handle steerine on the 2009- .
Crash of A1lr France Flight 447

. ... Northeast blackout leaves 50M people
Crash of American A1rlines without power, August 14, 2003

Miscalculated Radiation Doses at the Mational Oncology Institute .
¥ Inside the Pentium II Math Bug

Explosion of Ariane 5 B Flight 581 bpu Dahaowt B Pallinc

Fouer-Dutage across Northeastern .3, and Southeastern Lanada

Vulnerabilities Found In Banking Apn<s
n Mathew J. Schwartz ENEWE"EU'S““MUW" Of the Hatch Muclear Pover Plant

System Design — The Cost of Trustworthiness

APPROYED FOR PUBLIC RELEASE. DISTRIBUTION LANLINITED

gl 12y Historical schedule trends with complexity

:4':' MENtEn HE o bl IO O o sgfumesd B etk
F-"E':l Pl-ia'i:l""r:'l Apmoepace EyseEms (15SD-presend] | B-1Z%4T
. = - Automobiles (196 0—present) 4R
2 200 - | Moo 1 nirgrated Circuits (1970—presenty | 0%
E deBign Mow =
E 180 - 1 1 1
= 160 - | - |
= .ﬂ.anaﬁgaexvﬂﬂe 1| |l Roduciion &
= 140 ‘.musm-#m + : Developmant Effort
o
[
8 120 1
E LW SURomche -
E 100 - ' ‘ m;.;;*ﬂan) !
o
E 80 -AL:_::"_r::;E:- = ABDERacE WEhks 2 ' '
= ED -"='+ _+15IS|:E
- 40 'ﬁ'IfT{'* - . Imtegrated Clrcwit
rg + . . . i Pantium Mext Gen
20 A1 m— i) BOBE Ml 288 Inte) 380 + x;r
0 1060 Aomcibdle
! ! ! i e
1.E+03 1.E+04 1.E+05 1.E+086 1.E+07 1.E+08 1.E+0%9 1.E+10

Complexity*
[Part Count+ Source Lines of Code (SLOC))

System Design — The Cost of Trustworthiness

@ The problem

ONE QUINTILLION

ONE QUADRILLION

ONE TRILLION

ONE BILLION

ONE MILLION

ONE THOUSAND

*from Augustine’s [aws, 6™ Edition, AIAA (June 1997)

" GE
DEFEIR ===«
/\J\'ﬁ// q&nf "
o Entire Defense

i
" # budget to buy one
* 9 airplane.
o’
.
1900 1950 2000 2050 2100 2150

YEAR OF INITIAL OPERATION

APPRCVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

gh . System Design — Verification

Should be:

O faithful e.g. whatever
property is satisfied

Should be:

L consistent
e.g. there exists

for the model holds some model
for the real system Verification satisfying them
O generated Method O complete

automatically from
system descriptions

e.g. they tightly
characterize the
system’s behavior

YES, NO, DON'T KNOW

O Present systems are not trustworthy!

O $1,000 per line of code for “high-assurance” software!

o System Design — Verification

Verification techniques are applicable to global models
and thus suffer from well-known limitations
= Can contribute to establishing trustworthiness for
requirements that can be formalized and checked
efficiently
= For optimization requirements, a more natural
approach for their satisfaction is by enforcing or
synthesis rather than by checking

Verification
* |s a stopgap until other alternatives for achieving correctness work

* |s a “speciality” of computing — no other scientific discipline gives it a
such a prominent place

= adiscipline is not worthy of scientific merit if predictability can be
achieved only through verification

19

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

20

Rigorous System Design — The Concept

RSD considers design as a formal accountable and iterative process for
deriving trustworthy and optimized implementations from an application

software and models of its execution platform and its external environment

U Model-based: successive system descriptions are obtained by correct-by-
construction source-to-source transformations of a single expressive model
rooted in well-defined semantics

U Accountable: possibility to assert which among the requirements are
satisfied and which may not be satisfied

RSD focuses on mastering and understanding design as a problem solving
process based on divide-and-conquer strategies involving iteration on a set
of steps and clearly identifying

4 points where human intervention and ingenuity are needed to resolve
design choices through requirements analysis and confrontation with
experimental results

U segments that can be supported by tools to automate tedious and
error-prone tasks

Rigorous System Design — Four Guiding Principles

Separation of concerns: Keep separate what functionality is provided
(application SW) from how its is implemented by using resources of the target
platform

Components: Use components for productivity and enhanced correctness

Coherency: Based on a single model to avoid gaps between steps due to the
use of semantically unrelated formalisms e.g. for programming, HW
description, validation and simulation, breaking continuity of the design flow
and jeopardizing its coherency

Correctness-by-construction: Overcome limitations of a posteriori verification
through extensive use of provably correct reference architectures and
structuring principles enforcing essential properties

Rigorous System Design — Simplified Flow

Requirements

Application SW
Model in BIP

Integration of
Architectural Constraints

Cost/Performance
Analysis

System Model in BIP

Integration of
Code Generation pus Communication Glue

Distributed System Model
in S/R-BIP

Deployable Code

1 System Design

1 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

24

" Separation of Concerns

\

1Functlonal > WHAT are the provided

services

Application SW

Extra-Functional

> HOW resources of the
‘/I\A execution platform are used

Separation of Concerns — From ASW to the System Model

Application SW

Time and resources are external parameters
that are linked to corresponding physical quantities
of the execution environment

System Model
Obtained by instrumentation of the ASW
=Time and resources are state variables
= Each action consumes and liberates an amount of
resources explicitly specified e.g. execution times,
memory, energy

Separation of Concerns — Building a System Model

Resource-Consistency: faithful modeling of physical resources

= Physical time is monotonically increasing - time progress cannot be
blocked

= Model time progress can block or can involve Zeno runs — deadline
miss = deadlock or time-lock.

Additional difficulties arise from discretization, in particular for distributed
execution

Resource-robustness: small change of resource parameters entalil
commensurable change of performance
= Performance degradation can be observed for increasing speed of the
execution platform — Timing Anomaly

= Non determinism is one of the identified causes of such a counter-
intuitive behavior

We lack results guaranteeing resource-robustness e.g. worst-case and best-
case analysis suffice to determine performance bounds.

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

28

gitComponent-based Design

C v

Components are
iIndispensable for enhanced
productivity

and correctness

Component composition
lies at the heart of the
parallel computing
challenge

There is no Common
Component Model
- Heterogeneity

Component-based Design — Synchronous vs. Asynchronous

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

tstepistepj—steplistep j

Asynchronous components (General purpose application SW)
L No predefined execution step

Open problem: Theory for consistently composing synchronous and
asynchronous components e.g. GALS

-~ N
- Ht / L1 Input
Dasired . Uheel Speed
- - Tire Torque
relative -. Rt ———— F’
i A -~ e torque iheelSpeed
shp "Ili IIE' - T
c

it 2)

Component-based Design — Synchronous vs. Asynchronous

yout

Rt >
-

— _""-____-_-\-
P Ly
A -
-
mu-zlip feight g 1 f
friction curve _”m”'*;}_F' 5 J
' \ehicle

speed

(angulan

..

Stopping distance

2

Vehicle speed

5d

1.0+ uf1Wu2) + (uZF=0Teps) &

._-|
-

=]
f—a-3]

Relative Slip

Matlab/Simulink

Copyright 1980-2006 The Mathiats, Inc.

31

= Component-based Design — Synchronous vs. Asynchronous

Mathematically simple does not imply computationally simple!
There is no finite state computational model equivalent to a unit delay!

y()=x(t-1)
>

x(t) .
— Unit Delay

xT X4
x(t)
yT yl
y(t)
<2
xT 1:=0
9 A0
_1“ Equivalent timed automaton,
i = provided that the distance
y¥ yT .
between two consecutive input

_}4 /_1 changes is more than 1s.
_ Xy 1:=0

Component-based Design — Synchronous vs. Asynchronous

UML Model

(Rational Rose)

Abort
Wait_Start

Start(HO_time) / begin
clock.set(298900);
HO.set(HO time) end

Wait_Igniti
on_Time

Wait_Clos
e EVBO

5 100)

timeout{clock) / begin :)
lock.set(TimeConstanis.MS_100); / clock.set(TimeConstants.M
current_is_ok:=EVBO.Open() end

Stop1

=
[current_is_ok = false |/ clock.reset() L

[current_is_ok = true]

timeout(clock) / current_is_ok:=EVVP Llose()

Open_EVB Wait_Clos
0 e EVVP
meout(clock) /
current_is_ok:=EVVP. / clock.set(TimeConstants.MS_10
Open() Stop2
[current_is_ok = false] -

[current_is_ok = true]

=8 Component-based Design — Programming Styles

Thread-based programming Actor-based programming

Software Engineering Systems Engineering

Component-based Design — Interaction Mechanisms

-

Rendezvous: atomic symmetric Broadcast: asymmetric synchronization

synchronization triggered by a Sender

Existing formalisms and theories are not expressive enough
= use variety of low-level coordination mechanisms including
semaphores, monitors, message passing, function call
= encompass point-to-point interaction rather than multiparty
Interaction

Component-based Design — Composition

O Is it possible to express component coordination in terms of composition
operators?
We need a unified composition paradigm for describing and analyzing the
coordination between components in terms of tangible, well-founded and
organized concepts and characterized by
= Orthogonality: clear separation between behavior and coordination
constraints
= Minimality: uses a minimal set of primitives
= EXxpressiveness: achievement of a given coordination with a minimum
of mechanism and a maximum of clarity

O Most component composition frameworks fail to meet these requirements
= Some are formal such as process algebras e.g. CCS, CSP, pi-
calculus
= Other are ad hoc such as most frameworks used in software
engineering e.g. ADL, or systems engineering e.g. SystemC

Component-based Design — The Concept of Glue

Build a component C satisfying a given property P, from
" ¢, asetof atomic components described by their behavior
= g/ ={gl, ..., gl, ...} a set of glue operators on components

gl12
sat P
c!| ¢! c| C)

Glue operators are stateless — separation of concerns between
behavior and coordination

Component-based Design — Glue Operators

We use operational semantics to define the meaning of a
composite component — glue operators are “behavior
transformers”

101 B
B, B B, | "

perational

Semantics

Glue Operators

= build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators

= can be specified by using a family of operational semantics rules
(the Universal Glue)

Component-based Design — Glue Operators: Properties

Glue is a first class entity independent from behavior that can be
decomposed and composed

1. Incrementality

2
. o oo . . o oo .

112

2. Flattening

112

Component-based Design — Glue Operators: Expressiveness

= Different from the usual notion of expressiveness!

= Based on strict separation between glue and behavior

Given two glues G, , G,

G, is strongly more expressive than G,

If for any component built by using G, and a set of components ¢,
there exists an equivalent component built by using G, and ¢,

Component-based Design — Glue Operators: Expressiveness

Given two glues G, , G,

G, Iis weakly more expressive than G,
If for any component built by using G, and a set of components ¢,
there exists an equivalent component built by using G, and ¢,v ¢
where ¢ is a finite set of coordinating components.

|12

Component-based Design — Glue Operators: Expressiveness

SCCS
W$ <s
¥ < <
ccs —X > [g X > [BIp
=3
Universal
W?é <S Glue
CSP

[Bliudze&Sifakis, Concur 08]

Component-based Design — Modeling in BIP

Layered component model

Expressiveness

Ir_qu Ao UL '\

B E H A V Il O R

Composition operation parameterized by glue IN12, PR12

PR12
IN12

PR1 PR2
IN1 IN2

PR1 ® PR2 ® PR12

_PR1®PR2®PR12
INT ® IN2 ® IN12

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

44

O Using semantically unrelated formalisms e.g. for programming, HW
description and simulation, breaks continuity of the design flow and
jeopardizes its coherency

0 System development is often decoupled from validation and evaluation.

= Semantic Coherency

Host Language H
= Common Component Model
= Expressive

=Simple and Elegant

(@) (@) (@) (@
DSL Phys. Systems HDL SW Systems
Data-flow Modeling Lan. Verilog Modeling Lan
Synchronous Matlab SystemC UML
Event-driven Modelica TLM SysML
Asynchronous MP IP-XACT
Cid)@ \ e G AL
&, 2, o
(07 0% Q 6\(\
g % & o
o & <
.),

45

Semantic Coherency — Embedding

HOST LANGUAGE

Any system design flow is
de facto based on a host
programming language
such as C or Java

Semantic Coherency — Embedding

Description in a language L

Structured Operational Semantics for L is

Implemented by an Engine which cyclically
executes a two-phase protocol:

1. Monitors components and determines
enabled interactions

2.Chooses and executes one enabled
interaction

Semantic Coherency — Embedding

SW written in a language L SW written in Host Lanquage H
—@ 0|- o
MBEDDING g
|
@
Engine for L
vl *'

Engine for H

(SOS for H)

Semantic Coherency — Embedding

Str
o
X Y
1> + > O .+
—A EMBEDDING !
— pre <
—* Bpre ’
?
cmp
Y=X+pre(Y)

. Program in BIP
Program In Lustre J

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

50

g~ Correct by Construction

1 sat Functional

Application SW

> refinement relation

preserving
functional properties

sat Extra-Functional

= Correct by Construction — Architectures

Architectures
O depict design principles, paradigms that can be understood
by all, allow thinking on a higher plane and avoiding
low-level mistakes A A

O are a means for ensuring global properties characterizing the V
coordination between components — correctness for free

O Using architectures is key to ensuring trustworthiness and
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures
ensuring both functional and non functional properties e.g.
Fault-tolerant architectures

Resource management and QoS control

Time-triggered architectures

Security architectures

Adaptive Architectures

SOAP-based architecture, RESTful architecture

CO0O000

= Correct by Construction — Architecture Definition

An architecture is a family of operators A(n)[X] parameterized by their arity n
and a family of characteristic properties P(n)

A(n)[B1,..,Bn] = gl(n)(B1,..,Bn, C(n)), where C(n) is a set of coordinators
A(n)[B1,..,Bn] meets the characteristic property P(n).

: Glue
. . Gle

Architecture Transaction Processing
Component

Cl|C| e ClIC| =l

Characteristic property: atomicity of transactions, fault-tolerance

Note that the characteristic property need not be formalized!

53

8 Correct by Construction — Architectures

Rulel: Property Enforcement

Architecture
for Mutual Exclusion

Components

Architecture
for Mutual Exclusion

satisfies Mutex

o4

=8 Correct by Construction — Architectures: Composability

Rule2: Property Composability

Mutual Exclusion Schedullng Policy

Itif I

Mutual Exclusion

&,
Scheduling Polic

Feature interaction in telecommunication systems, interference among web
services and interference in aspect programming are all manifestations of a
lack of composability

Sifakis et al “A General Framework for Architecture Composability” SEFM 2014

Correct by Construction — Refinement

The Refinement Relation =

(Asynch Message Passing)

Cl/iC2 c3/c4 > Cl1 1 C2 /C3 |CH4

Sl S2

S1>S2 (S2refines S1) if

= all traces of S2 are traces of S1(modulo some observation criterion)
= If S1 is deadlock-free then S2 is deadlock-free too

= > is preserved by substitution

Correct by Construction — Refinement

Preservation of = by substitution

Frotocol

Cl [C2

Cl | C2

Rendezvous

Cl [C2

Cl | C2

vV

Correct by Construction — Refinement Preservation

rcv(b) str(b) str(a) rcv(a)

b a | :,\é Cé %‘) e
v é ¥ ack(b) (mp(b) cmp(at) ack(a)

\ty/ S O

)€

~

Correct by Construction — The BIP Toolset

Simulink

Model Repository

Embedding Tools

Platform
Language model

Factory BIP metamodel
| D-Finder § 525

Verification S/R BIP Transformers
model

Code generation

and runtimes C++ generator Distributed BIP .
(engine-based) generator BIP Compiler

C/C++| C/C++ |||

BIP BIP BIP

—. executable - executable - executable g

BIP model

BIP

BIP Runtime Engine Distributed Computing Infrastructure

Performance Evaluation

Correct by Construction — HW-driven refinement

Instrumented
System Model

Native BIP
Simulation

System

~
Application SW I Mappin I Architecture I
| pp L pping L Sl
. 1] /
(] | | |)
Component
Application hl-'IW Library
SW Model Architecture
: Model HdS
Natlve |_3|P Component
k Simulation Library

Model

I

Multi-
threaded
application

HdS
Code

/
\

Input

System Model Generation

Code Generation

Correct by Construction — Distributed Implementation

SW model

EQ Q|-. ’J.

12

Distributed L \

|mp|ementation Interface| |Interface| |Interface| |Interface Interface

Correct by Construction — Distributed Implementation

[al,a2][o3,04]
CR
al a2 a3 Protocol
| | . EEmEEE
C1 C2 C3 C4 C5 Cé
| |
o4 ﬁw

v

Conflict Resolution Protocol

Yok ' fail rese?ve vok vfaiI rese?ve
w .ok .fail reserye .ok iail reserye
lﬁtw Interaction Protocol Interaction Protocol
ol o2 o3 o4
\4 [J \4 []
port offer port offer

offer port offer port offer port offer port offer port offer port
o

Correct by Construction — Distributed Implementation

o4
[L.
Token Ring | , TokenRing Token Ring
CRP ST RT CRP ST RT CRP
reserve [Iokz Ifailz reser"e?’l ok?I_IfaiISr eser"eAI ok4Ufai|4
Interaction Protocol Interaction Protocol
al, a2 a3, a4

'Y YY
I I
|
|

\ \\\M 106 .

\
\ l |
|

Correct by Construction — Distributed Implementation

o4
b SFi ﬂ‘ Dining
Dining :i“af e Philosophers
Philosophers :;;‘ 4) .CRP
CRP ORF2 Dy Dining T
»m\. Philosophers
— CRP
reserve2 ok2 fail2 reserve3I ok3| | fail3 reserve4l ok4‘_i faila
Interaction Protocol Interaction Protocol
al, a2 a3, a4

LA Yy

I I \

1 \ l |

| |
p4 ’06 Ip5‘p6

Correct by Construction — Distributed Implementation

Conflict Dining Dining
Resolution Philo. CRP Philo. CRP
Protocol ~ .
\ : ining
Philo. CRP
al o2 o3 -

| | | |])
I 1 Interaction Interaction

Cl |} C2 || C3 || CA|lC5] CO |) ﬁi s | Prot.al a2 || Prot. a3 a4
i - | '
4 I

a

Partitioning of
Interactions

Partitioning of

N
Components — 'ﬁﬁ

!

/ Dining Philo. CRP

\ Inter. Inter. Prot. a.3,04
Corel Core2 Corel Core2 P;0t2 Il \ /,'I |
Code o 27111\

— s oot Generator Kol .. 0 ... 0 .. I . 8 . B . |

VR

Mapping of
Components

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

66

Discussion — Can the Vision Come True?

Things go completely the opposite way!

The need for rigorous design is sometimes directly or indirectly questioned
by developers of large-scale systems (e.g., web-based systems) who
privilege experimental/analytic approaches:

= The cyber-world can be studied in the same manner as the physical world,
e.g. Web Science, “Cyber-Physics?”

= The aim is to find laws that govern/explain observed phenomena rather than
to investigate design principles for achieving a desired behavior.

“On line companies don’t anguish over how to design their Web sites.
Instead they conduct controlled experiments by showing different versions
to different groups of users until they have iterated to an optimal

solution” .

My opinion
= Experimental approaches can be useful only for optimization purposes
= Trustworthiness is a qualitative property and by its nature, it cannot be
achieved by fine tuning of parameters. Small changes can have a dramatic
impact on system safety and security.

g Discussion — Why Is It So Hard?
‘The Physics Hierarchy. The Bio-Hierarchy

m m Organ
Crystals-Fluids-Gases on Set Archite s Cel
Atoms m Protein and RNA

We need theory, methods and tools for climbing
up-and-down abstraction hierarchies

eVeE Protein and RNA networks

Genes

g Discussion — The Way Forward

Design formalization raises a multitude of deep theoretical problems related
to the conceptualization of needs in a given area and their effective
transformation into correct artifacts. Two key issues are

Languages: Move from thread-based programming to actor-based
programming for component-based systems
= as close as possible to the declarative style so as to simplify reasoning and

relegate software generation to tools encompassing

= supporting synchronous and asynchronous execution as well as the main
programming paradigms

= allowing description of architectures and high-level coordination
mechanisms

Constructivity: There is a huge body of not yet well-formalized solutions to
problems in the form of algorithms, protocols, hardware and software
architectures. The challenge is to

= formalize these solutions as architectures and prove their correctness

= provide a taxonomy of the architectures and their characteristic properties
= decompose any coordination property as the conjunction of predefined
characteristic properties enforced by predefined architectures?

& Discussion — The Rationale for Desi

Information
Knowledge

Formalized Knowledge
Mathematics

Social

Biology Computing Sciences

S e

E— udy in order
[o
[

B = -
=
o T
o
o
o

Build in order
to Study

Human-Built Worlo

Artifacts Tl
Cyber-world

Discussion — For a System Design Science

Achieving this goal for systems
engineering is both an intellectually
challenging and culturally enlightening
endeavor — it nicely complements the
guest for scientific discovery in natural
sciences

Failure in this endeavor would
= seriously limit our capability to
master the techno-structure

» also mean that designing is a
definitely a-scientific activity driven
by predominant subjective factors
that preclude rational treatment

Is everything for the best in the best of all possible cyber-worlds ?
- | believe the toughest uphill battles are still in front of us

Discussion

