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Systems Everywhere



Systems Everywhere – For a Smarter Planet

IBM’s initiative for a smarter planet

INSTRUMENTED: We now have the ability to measure, sense and 
see the exact condition of practically everything.

INTERCONNECTED: People, systems and objects can communicate
and interact with each other in entirely new ways

INTELLIGENT: We can respond to changes quickly and accurately, by
predicting events and optimizing resources



Systems Everywhere – Mobiles Services



Systems Everywhere – The Google Universe



Systems Everywhere – The Internet of Things 



From Programs to Systems – Significant Differences
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From Programs to Systems – New Trends
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New trends break with traditional Computing Systems Engineering. 
It is hard to jointly meet technical requirements such as:

 Reactivity: responding within known and guaranteed delay
e.g. flight controller 

 Autonomy: provide continuous service without human intervention 
e.g. no manual start, optimal power management

 Dependability: guaranteed minimal service in any case 
e.g. resilience to attacks, hardware failures, software execution errors

 Scalability: at runtime or evolutionary growth (linear performance 
increase with resources)
e.g. reconfiguration, scalable services 

Technological challenge: 
Capacity to design systems of guaranteed functionality and quality, 
at acceptable costs.

...and also take into account economic requirements for optimal cost/quality
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System Design – About Design

RECIPE
(Program)

 Put apples in pie plate;
 Sprinkle with cinnamon 
and 1 tablespoon sugar;

 In a bowl mix 1 cup sugar, 
flour and butter;

 Blend in unbeaten egg, 
pinch of salt and the nuts;

 Mix well and pour over apples;
Bake at 350 degrees 

for 45 minutes

INGREDIENTS
(Resources)

1 pie plate buttered
5or 6 apples, cut up
¾ c. butter, melted

1 c. flour
½ c. chopped nuts
1tsp cinnamon
1tbsp sugar
1c. Sugar
1 egg

Apple 
Pie

Design is a Universal Concept! 
.
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System Design – Two Main Gaps
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System Design – The Concept of Correctness for Systems
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Trustworthiness requirements express assurance that the designed 
system can be trusted that it will perform as expected despite

HW failures Design/Programming
Errors

Environment 
Disturbances

Malevolent 
Actions

Optimization requirements are quantitative constraints on resources such 
as time, memory and energy characterizing

1) performance e.g.  throughput, jitter and latency 
2) cost e.g. storage efficiency, processor utilizability
3) tradeoffs between performance and cost



System Design – Trustworthiness vs. Optimization
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 Trustworthiness requirements characterize qualitative correctness – a 
state is either trustworthy or not

Non Trustworthy States

 Optimization requirements characterize execution sequences 

Trustworthiness vs. Optimization
 The two types of requirements are often antagonistic 
 System design should determine tradeoffs driven by cost-effectiveness 

and technical criteria



System Design – Levels of Criticality
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Safety critical: a failure 
may be a catastrophic 
threat to human lives

Security critical: 
harmful 
unauthorized 
access

Mission critical:  system availability is 
essential for  the proper running of an 
organization or of a  larger system

Best-effort: optimized use of resources for 
an acceptable level of trustworthiness



System Design – Reported Failures



System Design – The Cost of Trustworthiness



System Design – The Cost of Trustworthiness
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System Design – Verification

Verification 
Method

Requirements

YES, NO, DON’T KNOW

Should be: 
 faithful e.g. whatever 

property is satisfied 
for the model holds 
for the real system

 generated 
automatically from 
system descriptions

Should be: 
 consistent

e.g. there exists 
some model 
satisfying them

 complete 
e.g. they tightly 
characterize the 
system’s behavior

 Present systems are not trustworthy!

 $1,000 per line of code for “high-assurance” software!

Model
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System Design – Verification

Verification 

 is a stopgap until other alternatives for achieving correctness work

 is a “speciality” of computing – no other scientific discipline gives it a 
such a prominent place 

 a discipline is not worthy of scientific merit if predictability can be 
achieved only through verification

Verification techniques are applicable to global models 
and thus suffer from well-known limitations 
 Can contribute to establishing trustworthiness for 

requirements that can be formalized and checked 
efficiently

 For optimization requirements, a more natural 
approach for their satisfaction is  by enforcing or 
synthesis rather than by checking



O
V
E
R
V
I
E
W

20

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion



Rigorous System Design  – The Concept

RSD considers design as a formal accountable and iterative process for 
deriving trustworthy and optimized implementations from an application 
software and models of its execution platform and its external environment

 Model-based: successive system descriptions are obtained by correct-by-
construction source-to-source transformations of a single expressive model
rooted in well-defined semantics

 Accountable: possibility to assert which among the requirements are 
satisfied and which may not be satisfied

RSD focuses on mastering and understanding design as a problem solving 
process based on divide-and-conquer strategies involving iteration on a set 
of steps and clearly identifying 

 points where human intervention and ingenuity are needed to resolve 
design choices through requirements analysis and confrontation with 
experimental results 

 segments that can be supported by tools to automate tedious and 
error-prone tasks 



Rigorous System Design – Four Guiding Principles

Separation of concerns: Keep separate what functionality  is provided 
(application SW) from how its is implemented by using resources of the target 
platform

Coherency: Based on a single  model to avoid gaps between steps due to the 
use of semantically unrelated formalisms e.g. for programming, HW 
description, validation and simulation, breaking continuity of the design flow 
and jeopardizing its coherency

Components:  Use components for productivity and enhanced correctness

Correctness-by-construction: Overcome limitations of a posteriori verification 
through extensive use of provably correct reference architectures and 
structuring principles enforcing  essential properties



Rigorous System Design – Simplified Flow

Integration of
Architectural Constraints

Code Generation
Integration of

Communication Glue

RequirementsRequirements

D-Finder

Cost/Performance
Analysis

Embedding

Application SW
Model in BIP

Deployable Code Distributed System Model
in S/R-BIP

System Model in BIP

MappingExecution Platform
Model

Application SW
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Separation of Concerns

Requirements

Execution Platform

System Model

WHAT are the provided 
services 

HOW resources of the 
execution platform are used 

Application SW

Functional
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Separation of Concerns – From ASW to the System Model

System Model
Obtained by instrumentation of the ASW
Time and resources are state variables

 Each action consumes and liberates an amount of 
resources explicitly specified e.g. execution times,

memory, energy 

Application SW
Time and resources are external parameters 

that are linked to corresponding physical quantities 
of the execution environment

?



Separation of Concerns – Building a System Model

Resource-Consistency: faithful modeling of physical resources

 Physical time is monotonically increasing - time progress cannot be 
blocked 

 Model time progress can block or can involve Zeno runs – deadline 
miss = deadlock or time-lock. 

Additional difficulties arise from discretization, in particular for distributed 
execution

Resource-robustness: small change of resource parameters entail 
commensurable change of performance
 Performance degradation can be observed for increasing speed of the 

execution platform – Timing Anomaly

 Non determinism is one of the identified causes of such a counter-
intuitive behavior 

We lack results guaranteeing resource-robustness e.g. worst-case and best-
case analysis  suffice to determine performance bounds.
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Component-based Design

Execution Platform

 Components are 
indispensable for enhanced 
productivity
and correctness

 Component composition 
lies at the heart of the 
parallel computing 
challenge

 There is no Common 
Component Model
- Heterogeneity



Component-based Design – Synchronous vs. Asynchronous 

Open problem: Theory for consistently composing synchronous and 
asynchronous components e.g. GALS

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

step step step step

Asynchronous components (General purpose application SW)
 No predefined execution step



Component-based Design – Synchronous vs. Asynchronous 

31
Matlab/Simulink



Component-based Design – Synchronous vs. Asynchronous 

Mathematically simple does not imply computationally simple!
There is no finite state computational model equivalent to a unit delay! 

Unit Delay
x(t) y(t)=x(t-1)

x(t)
x x

y(t)
y y

1 s

x 

x 


y

y=0 y=0

y=1y=1


y

Equivalent timed automaton, 
provided that the distance 
between two consecutive input 
changes is more than 1s.



Component-based Design – Synchronous vs. Asynchronous 

UML Model 
(Rational Rose)



Thread-based programming

Component-based Design – Programming Styles

Software Engineering

Actor-based programming

Systems Engineering



Component-based Design – Interaction Mechanisms

Broadcast: asymmetric synchronization 
triggered by a Sender

Existing formalisms and theories are not expressive enough

 use variety of low-level coordination mechanisms including 
semaphores,  monitors, message passing, function call

 encompass point-to-point interaction rather than multiparty 
interaction

Rendezvous: atomic symmetric 

synchronization



Component-based Design – Composition 

 Most component composition frameworks fail to meet these requirements
 Some are formal such as process algebras e.g. CCS, CSP, pi-

calculus
 Other are ad hoc such as most frameworks used in software 

engineering e.g. ADL, or systems engineering e.g. SystemC

 Is it possible to express component coordination in terms of composition 
operators?
We need a unified composition paradigm for describing and analyzing the 
coordination between components in terms of tangible, well-founded and 
organized concepts and characterized by
 Orthogonality: clear separation between behavior and coordination 

constraints
 Minimality:  uses a minimal set of primitives
 Expressiveness: achievement of a given coordination with a minimum 

of mechanism and a maximum of clarity



Component-based Design – The Concept of Glue

Build a component C satisfying a given property P, from 
 C0 a set of atomic components described by their behavior
 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2 

gl12
sat Pgl2

Glue operators are stateless – separation of concerns between 
behavior and coordination



Component-based Design – Glue Operators

B1

gl
B2 Bn

We use operational semantics to define the meaning of a 
composite component  – glue operators are “behavior 
transformers” 

Operational
Semantics

B

Glue Operators 
 build interactions of composite components from the actions of 
the atomic components e.g. parallel composition operators
 can be specified by using  a family of operational semantics rules 
(the Universal Glue)



Component-based Design – Glue Operators: Properties





Glue is a first class entity independent from behavior that can be 
decomposed and composed

gl1

1. Incrementality

gl gl2

gl2
gl1

2. Flattening 

gl



Component-based Design – Glue Operators: Expressiveness

c1 c2 c3 c4 c1 c3 c2 c4

gl1

gl1
gl1

Given two glues G1 , G2 

G2 is strongly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0



 Different from the usual notion of expressiveness!

 Based on strict separation between glue and behavior



Component-based Design – Glue Operators: Expressiveness

c3c1 c2 c1 c3 c c2

gl1

gl1
gl1

Given two glues G1 , G2 

G2 is weakly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0 C
where C is a finite set of coordinating components.





Component-based Design – Glue Operators: Expressiveness

BIP BI CCS 

SCCS

CSP
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[Bliudze&Sifakis, Concur 08]
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Component-based Design – Modeling in BIP

B    E    H    A    V     I     O    R
Interactions (protocols)

Priorities  (schedulers)

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12
PR12

PR1 
IN1 

PR2 
IN2 IN1  IN2  IN12
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Semantic Coherency

 Using semantically unrelated formalisms e.g. for programming, HW 
description and simulation, breaks continuity of the design flow and 
jeopardizes its coherency

 System development is often decoupled from validation and evaluation.

DSL
Data-flow

Synchronous
Event-driven

Asynchronous MP

Phys. Systems
Modeling Lan.

Matlab
Modelica

HDL 
Verilog

SystemC
TLM

IP-XACT

SW Systems
Modeling Lan

UML
SysML
AADL

Host Language H
 Common Component Model

 Expressive 
Simple and Elegant



Semantic Coherency – Embedding 

Execution Platform

Any system design flow is 
de facto based on a host 
programming  language 
such as C or Java
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Semantic Coherency – Embedding 

Structured Operational Semantics for L is  
implemented by an Engine which cyclically 
executes a two-phase protocol:

1. Monitors components and determines 
enabled interactions

2.Chooses and executes one enabled 
interaction



Semantic Coherency – Embedding 

EMBEDDING

Engine for  L 
written in H



Semantic Coherency – Embedding 

EMBEDDING

+

pre

X Y

Y=X+pre(Y)

Program in Lustre

B+

Bpre

X Y

str

cmp

Program in BIP
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Correct by Construction

Execution Platform

System Model

sat Functional
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 : refinement relation 
preserving
functional properties

Requirements

Application SW
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Correct by Construction – Architectures

Architectures 
 depict design principles, paradigms that can be understood 

by all, allow thinking  on a higher plane and avoiding 
low-level mistakes

 are a means for ensuring global properties characterizing the 
coordination between components – correctness for free

 Using architectures is key to ensuring trustworthiness and 
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures
ensuring both functional and non functional properties e.g.
 Fault-tolerant architectures
 Resource management and QoS control
 Time-triggered architectures  
 Security architectures
 Adaptive Architectures
 SOAP-based architecture, RESTful architecture
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Correct by Construction – Architecture Definition

An architecture is a family of operators A(n)[X] parameterized by their arity n 
and a family of characteristic  properties P(n)

 A(n)[B1,..,Bn] = gl(n)(B1,..,Bn, C(n)), where C(n) is a set of coordinators

 A(n)[B1,..,Bn]  meets the characteristic property P(n).

Client-Server 
Architecture

C C S S

Glue

C C S S

Transaction Processing 
Component=

Characteristic property: atomicity of transactions, fault-tolerance …. 

Note that the characteristic property need not be formalized!
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Correct by Construction – Architectures

Components

Architecture
for Mutual Exclusion

Rule1: Property Enforcement

Architecture
for Mutual Exclusion

satisfies  Mutex



Correct by Construction – Architectures: Composability

Mutual Exclusion 

Rule2: Property Composability 

Scheduling Policy

Mutual Exclusion 


Scheduling Policy

Feature interaction in telecommunication systems, interference among web 
services and interference in aspect programming are all manifestations of a 
lack of composability

Sifakis et al “A General Framework for Architecture Composability” SEFM 2014



Correct by Construction – Refinement 


Rendezvous

Protocol 
(Asynch Message Passing)

The Refinement Relation 

S1 S2

S1  S2   (S2 refines S1) if
 all traces of S2 are traces of S1(modulo some observation criterion)
 if S1 is deadlock-free then S2 is deadlock-free too
  is preserved by substitution

C1 C2 C4 C’1C3 C’2 C’3 C’4



gl
Protocol

C’1 C’2

Rendezvous

C1 C2

gl
Rendezvous

C1 C2

Correct by Construction – Refinement 





Preservation of  by substitution

Protocol

C’1 C’2



Correct by Construction – Refinement Preservation

a

C1 C2

str(a)

cmp(a)

rcv(a)

ack(a)

C’1 C’2D

ab

C1 C2C3

str(a)

cmp(a)

rcv(a)

ack(a)cmp(b)

rcv(b)

ack(b)

C’1 C’2C’3D13 D23

str(b)







Correct by Construction – The BIP Toolset

Distributed Computing Infrastructure

C nesC DOL Lustre Simulink
BIP

Parser
Language

Factory

Embedding Tools

Verification
D-Finder

BIP Compiler

BIP model

S/R BIP 
model

C++ generator
(engine-based)

Distributed BIP
generator

C/C++ C/C++

Code generation 
and runtimes

BIP Runtime Engine

BIP 
executable

C/C++ C/C++

BIP 
executable

S2S
Transformers

Platform 
model

BIP 
executable

BIP 
executable

BIP metamodel

Model Repository



Correct by Construction – HW-driven refinement

DOLApplication SWApplication SW MappingMapping ArchitectureArchitecture

Application Application 
SW Model

HW 
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Correct by Construction – Distributed Implementation

Distributed Mutual Exclusion Protocol

Distributed
Implementation

Interaction
Protocol for

l1

Interaction
Protocol for

l2

Interaction
Protocol for

l3

Distributed 
Execution 
Engine

Interface Interface Interface Interface Interface

I1

I2

I3



Correct by Construction – Distributed Implementation

S2SS2S

S2SS2S

S2SS2S

C1C1 C6C6C3C3 C5C5C2C2 C4C4

C’1

offer port

C’2 C’3 C’4 C’5 C’6

Interaction ProtocolInteraction Protocol

offerport

Interaction ProtocolInteraction Protocol

offerport

reserveok

CR 
Protocol

fail

Conflict Resolution Protocol

reserveok fail

S2SS2S

S2SS2S

S2SS2S

1

offer port offer port offer port offer port offer port



reserveok fail reserveok fail

  



   



Correct by Construction – Distributed Implementation

Interaction Protocol


Interaction Protocol


Interaction Protocol


Interaction Protocol


reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4

Token Ring 
CRP

Token Ring 
CRPRTST

Token Ring 
CRPRTST

RT ST

p1

C’1 C’3C’2 C’4

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C’5

o51 p7 p8o52

C’6

o6 p5 p6

C1 C6C3 C5C2 C4

  





Correct by Construction – Distributed Implementation

reserve2 ok2 fail2 reserve3 ok3 fail3 reserve4 ok4 fail4

Dining 
Philosophers

CRP Dining 
Philosophers

CRP

Dining 
Philosophers 

CRP

SF1
RF1
SR1
RR1
SF2
RF2
SR2
RR2

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

C1 C6C3 C5C2 C4

  



Interaction Protocol


Interaction Protocol


Interaction Protocol


Interaction Protocol




Correct by Construction – Distributed Implementation

Conflict 
Resolution 
Protocol

Partitioning of 
Interactions

S2SS2S

S2SS2S

S2SS2S

Partitioning of 
Components S2SS2S

S2
S
S2
S

S2
S
S2
S

Core1Core1 Core2Core2

Core3Core3 Core4Core4

CHIPCHIP

Core1Core1 Core2Core2

Core3Core3 Core4Core4

CHIPCHIP

Sockets/C++
Code

MPI/C++
Code

Code 
Generator

S
2
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S
2
S

S
2
S

S
2
S

S
2
S

S
2
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C1 C6C3 C5C2 C4

  



Mapping of 
Components

C’1 C’3C’2 C’4 C’5 C’6

Dining 
Philo. CRP

Interaction 
Prot. 1 2
Interaction 
Prot. 1 2

Interaction 
Prot. 3 4
Interaction 
Prot. 3 4

Dining 
Philo. CRP

Dining 
Philo. CRP

C’1 C’2 C’4 C’5 C’6C’3

Dining Philo. CRP

Inter.
Prot.


Inter. Prot. 
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Discussion – Can the Vision Come True?

Things go completely the opposite way!
The need for rigorous design is sometimes directly or indirectly questioned 
by developers of large-scale systems (e.g., web-based systems) who 
privilege experimental/analytic approaches:

 The cyber-world can be studied in the same manner as the physical world, 
e.g. Web Science, “Cyber-Physics?”

 The aim is to find laws that govern/explain observed phenomena rather than 
to investigate design principles for achieving a desired behavior. 

“On line companies . . . . don’t anguish over how to design their Web sites.
Instead they conduct controlled experiments by showing different versions
to different groups of users until they have iterated to an optimal
solution” .

My opinion
 Experimental approaches can be useful only for optimization purposes
 Trustworthiness is a qualitative property and by its nature, it cannot be 

achieved by fine tuning of parameters. Small changes can have a dramatic 
impact on system safety and security.



Discussion – Why Is It So Hard?

The Physics Hierarchy

The Universe

Galaxy

Solar System

Electro-mechanical System

Crystals-Fluids-Gases

Molecules

Atoms

Particles

The Computing Hierarchy

The Cyber-world

Networked System

Reactive System

Virtual Machine

Instruction Set Architecture

Register Transfer Level

Logical Gate

Transistor

The Bio-Hierarchy

Organism

Organ

Tissue

Cell

Protein and RNA networks

Protein and RNA

Genes

We need theory, methods and tools for climbing 
up-and-down abstraction hierarchies

Ecosystem



Discussion – The Way Forward

Constructivity: There is a huge body of not yet well-formalized solutions to 
problems in the form of algorithms, protocols, hardware and software 
architectures. The challenge is to 
 formalize these solutions as architectures and prove their correctness
 provide a taxonomy of the architectures and their characteristic properties 
 decompose any coordination property as the conjunction of predefined 

characteristic properties enforced by predefined architectures? 

Design formalization raises a multitude of deep theoretical problems related 
to the conceptualization of needs in a given area and their effective 
transformation into correct artifacts. Two key issues are

Languages: Move from thread-based programming to actor-based 
programming for component-based systems 
 as close as possible to the declarative style so as to simplify reasoning and 

relegate software generation to tools encompassing 
 supporting synchronous and asynchronous execution as well as the main 

programming paradigms
 allowing description of architectures and high-level coordination 

mechanisms  



Ideas+ Data Information

Phenomena

Artifacts

Cyber-world
Artwork

Human-Built World

Living WorldPhysical World

Discussion – The Rationale for Design 

Sc
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e
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n 

Knowledge

Biology Computing
Social
Sciences 

Formalized Knowledge
Mathematics

Physics

Build in order
to Study

Study in order
to Build



Discussion – For a System Design Science

Is everything for the best in the best of all possible cyber-worlds ?
- I believe the toughest uphill battles are still in front of us

Achieving this goal for  systems 
engineering  is both an intellectually 
challenging and culturally enlightening 
endeavor – it nicely complements the 
quest for scientific discovery in natural 
sciences

Failure in this endeavor would 
 seriously limit our capability to 

master the techno-structure 

 also mean that designing is a 
definitely a-scientific activity driven 
by predominant subjective factors 
that preclude rational treatment



Discussion  

Thank You


