
Rigorous System Design

Joseph Sifakis
RiSD Laboratory EPFL

RTSS 2014
Rome

4 December 2014

Systems Everywhere

Systems Everywhere – For a Smarter Planet

IBM’s initiative for a smarter planet

INSTRUMENTED: We now have the ability to measure, sense and
see the exact condition of practically everything.

INTERCONNECTED: People, systems and objects can communicate
and interact with each other in entirely new ways

INTELLIGENT: We can respond to changes quickly and accurately, by
predicting events and optimizing resources

Systems Everywhere – Mobiles Services

Systems Everywhere – The Google Universe

Systems Everywhere – The Internet of Things

From Programs to Systems – Significant Differences

Program

i o

System

fi(ii) = oi

i n
…

…
 i ,

2,i
1

Physical
Environment

o
n …

…
 o

2 ,o
1

f(i) = o

 I/O values
 Terminating
 Deterministic
 Platform-independent

behavior
 Theory of computation

 I/O streams of values
 Non-terminating
 Non-predictable
 Platform-dependent

behavior
 No theory!

From Programs to Systems – New Trends

8

New trends break with traditional Computing Systems Engineering.
It is hard to jointly meet technical requirements such as:

 Reactivity: responding within known and guaranteed delay
e.g. flight controller

 Autonomy: provide continuous service without human intervention
e.g. no manual start, optimal power management

 Dependability: guaranteed minimal service in any case
e.g. resilience to attacks, hardware failures, software execution errors

 Scalability: at runtime or evolutionary growth (linear performance
increase with resources)
e.g. reconfiguration, scalable services

Technological challenge:
Capacity to design systems of guaranteed functionality and quality,
at acceptable costs.

...and also take into account economic requirements for optimal cost/quality

O
V
E
R
V
I
E
W

9

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

System Design – About Design

RECIPE
(Program)

 Put apples in pie plate;
 Sprinkle with cinnamon
and 1 tablespoon sugar;

 In a bowl mix 1 cup sugar,
flour and butter;

 Blend in unbeaten egg,
pinch of salt and the nuts;

 Mix well and pour over apples;
Bake at 350 degrees

for 45 minutes

INGREDIENTS
(Resources)

1 pie plate buttered
5or 6 apples, cut up
¾ c. butter, melted

1 c. flour
½ c. chopped nuts
1tsp cinnamon
1tbsp sugar
1c. Sugar
1 egg

Apple
Pie

Design is a Universal Concept!
.

P
ro

ce
du

ra
liz

at
io

n

M
at

er
ia

liz
at

io
n

System Design – Two Main Gaps

R
eq

ui
re

m
en

ts
(d

ec
la

ra
tiv

e)

A
pp

lic
at

io
n

S
W

(e
xe

cu
ta

bl
e)

S
ys

te
m

(H
W

+S
W

)

Correctness? Correctness?

P
ro

ce
du

ra
liz

at
io

n

M
at

er
ia

liz
at

io
n

System Design – The Concept of Correctness for Systems

12

Trustworthiness requirements express assurance that the designed
system can be trusted that it will perform as expected despite

HW failures Design/Programming
Errors

Environment
Disturbances

Malevolent
Actions

Optimization requirements are quantitative constraints on resources such
as time, memory and energy characterizing

1) performance e.g. throughput, jitter and latency
2) cost e.g. storage efficiency, processor utilizability
3) tradeoffs between performance and cost

System Design – Trustworthiness vs. Optimization

13

 Trustworthiness requirements characterize qualitative correctness – a
state is either trustworthy or not

Non Trustworthy States

 Optimization requirements characterize execution sequences

Trustworthiness vs. Optimization
 The two types of requirements are often antagonistic
 System design should determine tradeoffs driven by cost-effectiveness

and technical criteria

System Design – Levels of Criticality

14

Safety critical: a failure
may be a catastrophic
threat to human lives

Security critical:
harmful
unauthorized
access

Mission critical: system availability is
essential for the proper running of an
organization or of a larger system

Best-effort: optimized use of resources for
an acceptable level of trustworthiness

System Design – Reported Failures

System Design – The Cost of Trustworthiness

System Design – The Cost of Trustworthiness

17

System Design – Verification

Verification
Method

Requirements

YES, NO, DON’T KNOW

Should be:
 faithful e.g. whatever

property is satisfied
for the model holds
for the real system

 generated
automatically from
system descriptions

Should be:
 consistent

e.g. there exists
some model
satisfying them

 complete
e.g. they tightly
characterize the
system’s behavior

 Present systems are not trustworthy!

 $1,000 per line of code for “high-assurance” software!

Model

19

System Design – Verification

Verification

 is a stopgap until other alternatives for achieving correctness work

 is a “speciality” of computing – no other scientific discipline gives it a
such a prominent place

 a discipline is not worthy of scientific merit if predictability can be
achieved only through verification

Verification techniques are applicable to global models
and thus suffer from well-known limitations
 Can contribute to establishing trustworthiness for

requirements that can be formalized and checked
efficiently

 For optimization requirements, a more natural
approach for their satisfaction is by enforcing or
synthesis rather than by checking

O
V
E
R
V
I
E
W

20

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Rigorous System Design – The Concept

RSD considers design as a formal accountable and iterative process for
deriving trustworthy and optimized implementations from an application
software and models of its execution platform and its external environment

 Model-based: successive system descriptions are obtained by correct-by-
construction source-to-source transformations of a single expressive model
rooted in well-defined semantics

 Accountable: possibility to assert which among the requirements are
satisfied and which may not be satisfied

RSD focuses on mastering and understanding design as a problem solving
process based on divide-and-conquer strategies involving iteration on a set
of steps and clearly identifying

 points where human intervention and ingenuity are needed to resolve
design choices through requirements analysis and confrontation with
experimental results

 segments that can be supported by tools to automate tedious and
error-prone tasks

Rigorous System Design – Four Guiding Principles

Separation of concerns: Keep separate what functionality is provided
(application SW) from how its is implemented by using resources of the target
platform

Coherency: Based on a single model to avoid gaps between steps due to the
use of semantically unrelated formalisms e.g. for programming, HW
description, validation and simulation, breaking continuity of the design flow
and jeopardizing its coherency

Components: Use components for productivity and enhanced correctness

Correctness-by-construction: Overcome limitations of a posteriori verification
through extensive use of provably correct reference architectures and
structuring principles enforcing essential properties

Rigorous System Design – Simplified Flow

Integration of
Architectural Constraints

Code Generation
Integration of

Communication Glue

RequirementsRequirements

D-Finder

Cost/Performance
Analysis

Embedding

Application SW
Model in BIP

Deployable Code Distributed System Model
in S/R-BIP

System Model in BIP

MappingExecution Platform
Model

Application SW

O
V
E
R
V
I
E
W

24

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Separation of Concerns

Requirements

Execution Platform

System Model

WHAT are the provided
services

HOW resources of the
execution platform are used

Application SW

Functional

E
xt

ra
-F

un
ct

io
na

l

Separation of Concerns – From ASW to the System Model

System Model
Obtained by instrumentation of the ASW
Time and resources are state variables

 Each action consumes and liberates an amount of
resources explicitly specified e.g. execution times,

memory, energy

Application SW
Time and resources are external parameters

that are linked to corresponding physical quantities
of the execution environment

?

Separation of Concerns – Building a System Model

Resource-Consistency: faithful modeling of physical resources

 Physical time is monotonically increasing - time progress cannot be
blocked

 Model time progress can block or can involve Zeno runs – deadline
miss = deadlock or time-lock.

Additional difficulties arise from discretization, in particular for distributed
execution

Resource-robustness: small change of resource parameters entail
commensurable change of performance
 Performance degradation can be observed for increasing speed of the

execution platform – Timing Anomaly

 Non determinism is one of the identified causes of such a counter-
intuitive behavior

We lack results guaranteeing resource-robustness e.g. worst-case and best-
case analysis suffice to determine performance bounds.

O
V
E
R
V
I
E
W

28

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Component-based Design

Execution Platform

 Components are
indispensable for enhanced
productivity
and correctness

 Component composition
lies at the heart of the
parallel computing
challenge

 There is no Common
Component Model
- Heterogeneity

Component-based Design – Synchronous vs. Asynchronous

Open problem: Theory for consistently composing synchronous and
asynchronous components e.g. GALS

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

step step step step

Asynchronous components (General purpose application SW)
 No predefined execution step

Component-based Design – Synchronous vs. Asynchronous

31
Matlab/Simulink

Component-based Design – Synchronous vs. Asynchronous

Mathematically simple does not imply computationally simple!
There is no finite state computational model equivalent to a unit delay!

Unit Delay
x(t) y(t)=x(t-1)

x(t)
x x

y(t)
y y

1 s

x

x

y

y=0 y=0

y=1y=1

y

Equivalent timed automaton,
provided that the distance
between two consecutive input
changes is more than 1s.

Component-based Design – Synchronous vs. Asynchronous

UML Model
(Rational Rose)

Thread-based programming

Component-based Design – Programming Styles

Software Engineering

Actor-based programming

Systems Engineering

Component-based Design – Interaction Mechanisms

Broadcast: asymmetric synchronization
triggered by a Sender

Existing formalisms and theories are not expressive enough

 use variety of low-level coordination mechanisms including
semaphores, monitors, message passing, function call

 encompass point-to-point interaction rather than multiparty
interaction

Rendezvous: atomic symmetric

synchronization

Component-based Design – Composition

 Most component composition frameworks fail to meet these requirements
 Some are formal such as process algebras e.g. CCS, CSP, pi-

calculus
 Other are ad hoc such as most frameworks used in software

engineering e.g. ADL, or systems engineering e.g. SystemC

 Is it possible to express component coordination in terms of composition
operators?
We need a unified composition paradigm for describing and analyzing the
coordination between components in terms of tangible, well-founded and
organized concepts and characterized by
 Orthogonality: clear separation between behavior and coordination

constraints
 Minimality: uses a minimal set of primitives
 Expressiveness: achievement of a given coordination with a minimum

of mechanism and a maximum of clarity

Component-based Design – The Concept of Glue

Build a component C satisfying a given property P, from
 C0 a set of atomic components described by their behavior
 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2

gl12
sat Pgl2

Glue operators are stateless – separation of concerns between
behavior and coordination

Component-based Design – Glue Operators

B1

gl
B2 Bn

We use operational semantics to define the meaning of a
composite component – glue operators are “behavior
transformers”

Operational
Semantics

B

Glue Operators
 build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators
 can be specified by using a family of operational semantics rules
(the Universal Glue)

Component-based Design – Glue Operators: Properties

Glue is a first class entity independent from behavior that can be
decomposed and composed

gl1

1. Incrementality

gl gl2

gl2
gl1

2. Flattening

gl

Component-based Design – Glue Operators: Expressiveness

c1 c2 c3 c4 c1 c3 c2 c4

gl1

gl1
gl1

Given two glues G1 , G2

G2 is strongly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0

 Different from the usual notion of expressiveness!

 Based on strict separation between glue and behavior

Component-based Design – Glue Operators: Expressiveness

c3c1 c2 c1 c3 c c2

gl1

gl1
gl1

Given two glues G1 , G2

G2 is weakly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0 C
where C is a finite set of coordinating components.

Component-based Design – Glue Operators: Expressiveness

BIP BI CCS

SCCS

CSP

<S

<S

<S

<S W >W >

W >

W >

[Bliudze&Sifakis, Concur 08]

S
Universal

Glue

Component-based Design – Modeling in BIP

B E H A V I O R
Interactions (protocols)

Priorities (schedulers)

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12
PR12

PR1
IN1

PR2
IN2 IN1 IN2 IN12

PR1 PR2 PR12
S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

Expressiveness

O
V
E
R
V
I
E
W

44

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

45

Semantic Coherency

 Using semantically unrelated formalisms e.g. for programming, HW
description and simulation, breaks continuity of the design flow and
jeopardizes its coherency

 System development is often decoupled from validation and evaluation.

DSL
Data-flow

Synchronous
Event-driven

Asynchronous MP

Phys. Systems
Modeling Lan.

Matlab
Modelica

HDL
Verilog

SystemC
TLM

IP-XACT

SW Systems
Modeling Lan

UML
SysML
AADL

Host Language H
 Common Component Model

 Expressive
Simple and Elegant

Semantic Coherency – Embedding

Execution Platform

Any system design flow is
de facto based on a host
programming language
such as C or Java

H
O

S
T

LA
N

G
U

A
G

E

embedding

Semantic Coherency – Embedding

Structured Operational Semantics for L is
implemented by an Engine which cyclically
executes a two-phase protocol:

1. Monitors components and determines
enabled interactions

2.Chooses and executes one enabled
interaction

Semantic Coherency – Embedding

EMBEDDING

Engine for L
written in H

Semantic Coherency – Embedding

EMBEDDING

+

pre

X Y

Y=X+pre(Y)

Program in Lustre

B+

Bpre

X Y

str

cmp

Program in BIP

O
V
E
R
V
I
E
W

50

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Correct by Construction

Execution Platform

System Model

sat Functional

sa
t E

xt
ra

-F
un

ct
io

na
l

 : refinement relation
preserving
functional properties

Requirements

Application SW

52

Correct by Construction – Architectures

Architectures
 depict design principles, paradigms that can be understood

by all, allow thinking on a higher plane and avoiding
low-level mistakes

 are a means for ensuring global properties characterizing the
coordination between components – correctness for free

 Using architectures is key to ensuring trustworthiness and
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures
ensuring both functional and non functional properties e.g.
 Fault-tolerant architectures
 Resource management and QoS control
 Time-triggered architectures
 Security architectures
 Adaptive Architectures
 SOAP-based architecture, RESTful architecture

53

Correct by Construction – Architecture Definition

An architecture is a family of operators A(n)[X] parameterized by their arity n
and a family of characteristic properties P(n)

 A(n)[B1,..,Bn] = gl(n)(B1,..,Bn, C(n)), where C(n) is a set of coordinators

 A(n)[B1,..,Bn] meets the characteristic property P(n).

Client-Server
Architecture

C C S S

Glue

C C S S

Transaction Processing
Component=

Characteristic property: atomicity of transactions, fault-tolerance ….

Note that the characteristic property need not be formalized!

54

Correct by Construction – Architectures

Components

Architecture
for Mutual Exclusion

Rule1: Property Enforcement

Architecture
for Mutual Exclusion

satisfies Mutex

Correct by Construction – Architectures: Composability

Mutual Exclusion

Rule2: Property Composability

Scheduling Policy

Mutual Exclusion

Scheduling Policy

Feature interaction in telecommunication systems, interference among web
services and interference in aspect programming are all manifestations of a
lack of composability

Sifakis et al “A General Framework for Architecture Composability” SEFM 2014

Correct by Construction – Refinement

Rendezvous

Protocol
(Asynch Message Passing)

The Refinement Relation

S1 S2

S1 S2 (S2 refines S1) if
 all traces of S2 are traces of S1(modulo some observation criterion)
 if S1 is deadlock-free then S2 is deadlock-free too
 is preserved by substitution

C1 C2 C4 C’1C3 C’2 C’3 C’4

gl
Protocol

C’1 C’2

Rendezvous

C1 C2

gl
Rendezvous

C1 C2

Correct by Construction – Refinement

Preservation of by substitution

Protocol

C’1 C’2

Correct by Construction – Refinement Preservation

a

C1 C2

str(a)

cmp(a)

rcv(a)

ack(a)

C’1 C’2D

ab

C1 C2C3

str(a)

cmp(a)

rcv(a)

ack(a)cmp(b)

rcv(b)

ack(b)

C’1 C’2C’3D13 D23

str(b)

Correct by Construction – The BIP Toolset

Distributed Computing Infrastructure

C nesC DOL Lustre Simulink
BIP

Parser
Language

Factory

Embedding Tools

Verification
D-Finder

BIP Compiler

BIP model

S/R BIP
model

C++ generator
(engine-based)

Distributed BIP
generator

C/C++ C/C++

Code generation
and runtimes

BIP Runtime Engine

BIP
executable

C/C++ C/C++

BIP
executable

S2S
Transformers

Platform
model

BIP
executable

BIP
executable

BIP metamodel

Model Repository

Correct by Construction – HW-driven refinement

DOLApplication SWApplication SW MappingMapping ArchitectureArchitecture

Application Application
SW Model

HW

Model

HW
Architecture

Model

System
Model

Translation

Transformation

HW
Component
Library

HW
Component
Library

HdS
Component
Library

HdS
Component
Library

Translationdol2bip template gen

bipWeaverNative BIPNative BIP
Simulation

In
pu

t
S

ys
te

m
 M

od
el

 G
en

er
at

io
n

Instrumented
System Model

Instrumentation: API,
Observer injection

Native BIPNative BIP
Simulation

Performance
Results

Performance
Results

C
od

e
G

en
er

at
io

n

Code
Generation

Multi‐
threaded
application

code

Multi‐
threaded
application

code

HdS
Code
HdS
Code

P
er

fo
rm

an
ce

 E
va

lu
at

io
n

Correct by Construction – Distributed Implementation

Distributed Mutual Exclusion Protocol

Distributed
Implementation

Interaction
Protocol for

l1

Interaction
Protocol for

l2

Interaction
Protocol for

l3

Distributed
Execution
Engine

Interface Interface Interface Interface Interface

I1

I2

I3

Correct by Construction – Distributed Implementation

S2SS2S

S2SS2S

S2SS2S

C1C1 C6C6C3C3 C5C5C2C2 C4C4

C’1

offer port

C’2 C’3 C’4 C’5 C’6

Interaction ProtocolInteraction Protocol

offerport

Interaction ProtocolInteraction Protocol

offerport

reserveok

CR
Protocol

fail

Conflict Resolution Protocol

reserveok fail

S2SS2S

S2SS2S

S2SS2S

1

offer port offer port offer port offer port offer port

reserveok fail reserveok fail

Correct by Construction – Distributed Implementation

Interaction Protocol

Interaction Protocol

Interaction Protocol

Interaction Protocol

reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4

Token Ring
CRP

Token Ring
CRPRTST

Token Ring
CRPRTST

RT ST

p1

C’1 C’3C’2 C’4

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C’5

o51 p7 p8o52

C’6

o6 p5 p6

C1 C6C3 C5C2 C4

Correct by Construction – Distributed Implementation

reserve2 ok2 fail2 reserve3 ok3 fail3 reserve4 ok4 fail4

Dining
Philosophers

CRP Dining
Philosophers

CRP

Dining
Philosophers

CRP

SF1
RF1
SR1
RR1
SF2
RF2
SR2
RR2

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

C1 C6C3 C5C2 C4

Interaction Protocol

Interaction Protocol

Interaction Protocol

Interaction Protocol

Correct by Construction – Distributed Implementation

Conflict
Resolution
Protocol

Partitioning of
Interactions

S2SS2S

S2SS2S

S2SS2S

Partitioning of
Components S2SS2S

S2
S
S2
S

S2
S
S2
S

Core1Core1 Core2Core2

Core3Core3 Core4Core4

CHIPCHIP

Core1Core1 Core2Core2

Core3Core3 Core4Core4

CHIPCHIP

Sockets/C++
Code

MPI/C++
Code

Code
Generator

S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

C1 C6C3 C5C2 C4

Mapping of
Components

C’1 C’3C’2 C’4 C’5 C’6

Dining
Philo. CRP

Interaction
Prot. 1 2
Interaction
Prot. 1 2

Interaction
Prot. 3 4
Interaction
Prot. 3 4

Dining
Philo. CRP

Dining
Philo. CRP

C’1 C’2 C’4 C’5 C’6C’3

Dining Philo. CRP

Inter.
Prot.

Inter. Prot.

O
V
E
R
V
I
E
W

66

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Discussion – Can the Vision Come True?

Things go completely the opposite way!
The need for rigorous design is sometimes directly or indirectly questioned
by developers of large-scale systems (e.g., web-based systems) who
privilege experimental/analytic approaches:

 The cyber-world can be studied in the same manner as the physical world,
e.g. Web Science, “Cyber-Physics?”

 The aim is to find laws that govern/explain observed phenomena rather than
to investigate design principles for achieving a desired behavior.

“On line companies don’t anguish over how to design their Web sites.
Instead they conduct controlled experiments by showing different versions
to different groups of users until they have iterated to an optimal
solution” .

My opinion
 Experimental approaches can be useful only for optimization purposes
 Trustworthiness is a qualitative property and by its nature, it cannot be

achieved by fine tuning of parameters. Small changes can have a dramatic
impact on system safety and security.

Discussion – Why Is It So Hard?

The Physics Hierarchy

The Universe

Galaxy

Solar System

Electro-mechanical System

Crystals-Fluids-Gases

Molecules

Atoms

Particles

The Computing Hierarchy

The Cyber-world

Networked System

Reactive System

Virtual Machine

Instruction Set Architecture

Register Transfer Level

Logical Gate

Transistor

The Bio-Hierarchy

Organism

Organ

Tissue

Cell

Protein and RNA networks

Protein and RNA

Genes

We need theory, methods and tools for climbing
up-and-down abstraction hierarchies

Ecosystem

Discussion – The Way Forward

Constructivity: There is a huge body of not yet well-formalized solutions to
problems in the form of algorithms, protocols, hardware and software
architectures. The challenge is to
 formalize these solutions as architectures and prove their correctness
 provide a taxonomy of the architectures and their characteristic properties
 decompose any coordination property as the conjunction of predefined

characteristic properties enforced by predefined architectures?

Design formalization raises a multitude of deep theoretical problems related
to the conceptualization of needs in a given area and their effective
transformation into correct artifacts. Two key issues are

Languages: Move from thread-based programming to actor-based
programming for component-based systems
 as close as possible to the declarative style so as to simplify reasoning and

relegate software generation to tools encompassing
 supporting synchronous and asynchronous execution as well as the main

programming paradigms
 allowing description of architectures and high-level coordination

mechanisms

Ideas+ Data Information

Phenomena

Artifacts

Cyber-world
Artwork

Human-Built World

Living WorldPhysical World

Discussion – The Rationale for Design

Sc
ie
nc
e

De
sig

n

Knowledge

Biology Computing
Social
Sciences

Formalized Knowledge
Mathematics

Physics

Build in order
to Study

Study in order
to Build

Discussion – For a System Design Science

Is everything for the best in the best of all possible cyber-worlds ?
- I believe the toughest uphill battles are still in front of us

Achieving this goal for systems
engineering is both an intellectually
challenging and culturally enlightening
endeavor – it nicely complements the
quest for scientific discovery in natural
sciences

Failure in this endeavor would
 seriously limit our capability to

master the techno-structure

 also mean that designing is a
definitely a-scientific activity driven
by predominant subjective factors
that preclude rational treatment

Discussion

Thank You

